Vertex-weightings for distance moments and thorny graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex-weightings for distance moments and thorny graphs

Valence-weightings are considered for shortest-path distance moments, as well as related weightings for the so-called “Wiener” polynomial. In the case of trees the valence-weighted quantities are found to be expressible as a combination of unweighted quantities. Further the weighted quantities for a so-called “thorny” graph are considered and shown to be related to the weighted and unweighted q...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Vertex-coloring edge-weightings of graphs

A k-edge-weighting of a graph G is a mapping w : E(G) → {1, 2, . . . , k}. An edgeweighting w induces a vertex coloring fw : V (G) → N defined by fw(v) = ∑ v∈e w(e). An edge-weighting w is vertex-coloring if fw(u) 6= fw(v) for any edge uv. The current paper studies the parameter μ(G), which is the minimum k for which G has a vertexcoloring k-edge-weighting. Exact values of μ(G) are determined f...

متن کامل

Vertex Coloring of Graphs by Total 2-Weightings

An assignment of real weights to the edges and the vertices of a graph is a vertexcoloring total weighting if the total weight sums at the vertices are distinct for any two adjacent vertices. Of interest in this paper is the existence of vertex-coloring total weightings with weight set of cardinality two, a problem motivated by the conjecture that every graph has a such a weighting using the we...

متن کامل

Vertex-Colouring Edge-Weightings

A weighting w of the edges of a graph G induces a colouring of the vertices of G where the colour of vertex v, denoted cv, is ∑ e3v w(e). We show that the edges of every graph that does not contain a component isomorphic to K2 can be weighted from the set {1, . . . , 30} such that in the resulting vertex-colouring of G, for every edge (u, v) of G, cu 6= cv.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2007

ISSN: 0166-218X

DOI: 10.1016/j.dam.2007.05.042